If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2+37n+36=0
a = 7; b = 37; c = +36;
Δ = b2-4ac
Δ = 372-4·7·36
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(37)-19}{2*7}=\frac{-56}{14} =-4 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(37)+19}{2*7}=\frac{-18}{14} =-1+2/7 $
| 8n+4=2n | | x2-2.4x=2.2 | | 15=x/6+7 | | √6x-2=8 | | 3+2x+5x=24 | | y=-5/3-1 | | √6x-√2=8 | | -3.2x+9.1=4.62 | | =15+x67 | | 9+24/n=15 | | x^2-10x=25+144 | | 2x2-7x=12 | | -2=9x2-5x+2 | | 3(y-8)=6 | | 6x-2(-3x-5=154 | | 4u^2-u=0 | | -2(x)=9x2-5x+2 | | 3(n-1)=2n+9 | | 7=s/14 | | 3x+4/x-2=-4x+12/x-2 | | 6+3z-2=9z+10-3z | | 3k-1=7k+22 | | 3x2-4x=2 | | 8(.25x+.75)-3=17 | | 0.8-2x=1-3 | | -3+p=-11+3p | | x2-10x+29=0 | | 40/n+3=11 | | -5x+-90=205 | | 6x=2x+60+12 | | -5x+11=5x+13 | | 11(t-6)+4t=5(3t+5)9 |